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Abstract. Dynamical propertie of a network model composed of N conthuous 
elements with randomly chosen asymmetrical couplings and reduced connectivity are 
studied. We calculate numerically Lyapunov exponents and dimensions for chsotic 
and non-rhaotic s ta te  of the network. The dependence on the parameters c m  be 
described analytically, in good agreement with the numerical data. 

1. In t roduct ion  

The physical properties of neural networks have been studied frequently by means of 
models that show fixed point attractors [l-41. However, in neurobiological measure- 
ments one finds time-dependent, normally non-periodic behaviour. This behaviour 
has been analysed in terms of nonlinear dynamics [5-71. It has been claimed in re- 
cent studies 16-11] that the time dependence is essential for the data processing in 
the brain. Therefore the dynamical properties of network models that show com- 
plex temporal behaviour have attracted more and more attention during the past few 
years [12-221. There have even been examples of possible applications for the chaotic 
network dynamics [23, 241. 

In this paper we study a network model [25] that exhibits deterministic chaotic 
behaviour. The global structure of the network is neural, i.e. a number of identical 
simple elements (neurons) that sum up weighted inputs from other elements and give 
an output with respect to a sigmoid function. In order to distinguish this special 
kind of architecture from others like cellular automata and coupled map lattices i t  has 
become common [13, 15, 22, 261 to call this kind of network with neural architecture 
a ‘neural network’ even when no specific learning algorithm is involved. We analyse 
the nonlinear dynamical properties of such a network numerically as well as analyti- 
cally. We calculate the spectra of Lyapunov exponents (27,281 and the Kaplan-Yorke 
dimension [29] of the non-chaotic and chaotic (strange) attractors. The dependence 
of the largest Lyapunov exponent on the parameters and the shape of the Lyapunov 
spectra can be described analytically with only a few assumptions. Even though we 
consider a deterministic model and study the properties of the attractor, the main 
results hold also for a similar model, where the model parameters (i.e. the connection 
strengths) are changed randomly after every time step and a deterministic attractor 
is never reached. 

0305-4470/91/194557+10$03.50 @ 1991 1OP Publishing Ltd 4557 
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2. Description of the model 

The model consists of N neurons which are represented by continuous variables sj, 
These neurons are coupled through an asymmetrical matrix J with Ji j  E [-1,1] cho- 
sen randomly from an ensemble with equal distribution. The parallel deterministic 
dynamics is given by 

, 

I d  I 1 \  - +....hfnh It \ \  'ill T ' J  - Y"""\y," L I \  J J  

h i @ )  = JijSj 
l i - j l < k  

where g is the gain parameter, and the integer number k represents the connectivity. 

where every neuron is connected to the k nearest neighbours in both directions. In 
the numerical simulations therefore only the synaptic values of 2kN (instead of N 2 )  
connections have to be stored. However, for the analytical treatment i t  is more con- 
venient to formulate this connection scheme in terms of a quadratic hand matrix J, 
where only the k off-diagonal elements in both directions are non-zero. We simulate 
this netsvork ..sing a randcm start vector E(G) = (sl(0),s2(0), ..., E,(!?)) and iterate 
it according to the dynamics (1). In order to study the properties of the attractor the 
first transient iterations (approximately 1000) are ignored. 

In a preceding paper [25] we have shown that,  depending on the values of the 
control parameters g and k ,  one can observe stationary, periodic, quasiperiodic and 
chaotic behaviour (figure 1) t .  The line of transition from stationary to time-dependent 
behaviour turns out to be kc K g-2j  almost independent,!y of N ;  This can be under- 
stood in terms of a linear stability analysis [20, 261. 

Th.. '---I -I.. -$Ih- -..- &-- ""- ha :-& -_-_- &"A "- ~ d: : - - - I  _:_- -C nr 
A l l =  b"p"L"g)r "1 U l l C  " J " Y S " 1  11111 us " L Y . = L p " ~ " c "  a., (. "IIc-"IIII~II~I"II11L ,lug "L ' 1  I I ~ " L " I I a )  

deviation m(n + 1) Il,.lii,li<,ll g i l l  + I ]  

1 _____ j_._ ___ , . .. . 

Figure 1. Phase portraits for two different gain parameters and for constant 
connmtivity k = 5 ( N  = 400). As an observable the mean square deviation 
o(l) = c,"=,(s2(f.) - ~ , ( t ) )  is plotted. The starting time * , ( t o )  is chosen such 

system is in a quasiperiodic state; (a) g = 1.5: the phase portrait exhibits chaotic 
behaviour. 

. ."-"I..~ ~.:-.~\ ,., . -"  "*L. .L- ihri iransienis have disappeareo ,dppr"Ur,,dCrry ,U"" ,LrraL,"nsJ. ,a, y - "..,,d. LI1C 

t If the system is in this state. a trapping by a periodic orbit has not been found, even after several 
millions of iterations. 
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We wish to point out tha t  the details of the model (e.g. topology, distribution 
of the random numbers) are chosen in way described for the sake of convenience of 
simulation and analysis only. When not mentioned explicitly, the same model is used 
always in this paper. I t  turns out ,  however, tha t  similar results can also be obtained 
from a large number of different models with asymmetrical random couplings, when 
the  parameters are chosen in an appropriate way. 

3. Numerical results 

3.1. Lyapunou spectra 

The  dynamical behaviour of the system can be characterized in more detail by means 
of the spectrum of Lyapunov exponents A,. The  Lyapunov exponents measure the 
mean exponential separation between closely adjacent points under the action of the 
dynamics in the N different directions of the phase space. A positive Lyapunov ex- 
ponent means sensitive dependence on the initial conditions, i.e. chaos. In order to 
calculate the A-spectra, the neural network is considered as a N-dimensional nonlinear 
mapping at+l  = f(s,). The  Lyapunov exponents o f f  can be calculated as described 
by Eckmann and Ruelle [27] using the Jacobian of the mapping, defined as 

where 0,  denotes the  matrix of partial derivatives. The  Jacobian can be calculated 
analytically for every given s ta te  of the system: 

In order to separate the stretching-described by the Lyapunov exponents-from the 
rotation, we use the method of subsequent QR decomposition [27] of the Jacobian, 
where Q is an  orthogonal matrix and R is upper triangular. The  characteristic expo- 
nents A i  can now be calculated from the logarithm of the averaged diagonal elements 
Rii .  The  values are indexed such that A, is the largest Lyapunov exponent and the 
following are in decreasing order: A,  > A, > ... > A,; such an  ordered set of Ai 
represents the  Lyapunov spectrum of the system. 

We now compare the Lyapunov spectra for different sizes N of the network con- 
sidered. In order to do this, we average the Lyapunov exponents over a number of 
realizations (about 20) with different coupling matrices and we normalize the index i 
to the number N of exponents. We observe (figure 2) that  the normalized Lyapunov 
spectra are almost identicalt, i.e. the global structure of the characteristic exponents 
is independent of the size of the network. Furthermore, we observe tha t  only a few 
(about 3)  Lyapunov exponents are positive, whereas the rest (I00 or more) are nega- 
tive. This shows tha t  only a few degrees of freedom are chaotic and the rest show no 
sensitive dependence on the initial conditions. This behaviour can be quantified by 
means of the Kaplaii-Yorke dimension, as discussed in the next subsection. 

t If not mentioned explicitly, the s la t i s t id  errors in all figures are smaller than the symbols. 
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Lyapunov Exponent A; 
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Figure 2. The Lyapunov spectrum for different sizes ( N  = 50, 100, 150. 200) of 
the network. The resulting Lyapunov exponents are plotted against the index of the 
exponent normalized to the size N of the network. These normalized spectra are 
almost identical. 

9.2. Kaplan-Yorke dimension 

The static properties such as the fractal dimension of the attractor are connected t o  the 
dynamical properties, such as the Lyapunov exponents, by the Kaplan-Yorke relation. 
If the spectrum of Lyapunov exponents is known, the dimension of an attractor can 
be calculated according to the Kaplan-Yorke conjecture 128, 29) via the following 
formalism: 

(4) D,,=j+- CLXi 
I’j+ll 

where j is the largest integer for which E{=, Xi > 0. 
This enables us to extract for every given set of system parameters a single quan- 

tity that describes the static properties of the attractor. In figure 3 ( 0 )  we show the 
dependence of the KY dimension D,, on the gain parameter g. We find that first 
the dimension increases with the gain reaching a maximum at  about g = 1.5. After 
this point the KY dimension decreases even though the largest Lyapunov exponent 
still increases after this point. It should he pointed out that even the largest attractor 
dimension is quite low compared to the dimension ( N  = 100) of the phase space. 

The dependence of the dimension on the connectivity k for a network of N = 300 
neurons and a gain near the maximum in figure 3(a) is depicted in figure 3 ( b ) .  These 
results show us another feature: the K Y  dimension starts with a slope of one, which 
means that the attractors’ dimension is about half the value of the number of directly 
connected neurons (i.e. D,, = k). For higher values of k the slope decreases due to 
the effects of the finite size of the network. 

3.3. Slochaslical variation of lhe coupling matriz 

Up to now, we have described the properties of the attractors generated by the deter- 
ministic network dynamics, These considerations can he extended on a model where 
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Figure 3. ( a )  The K Y  dimension plotted against the gain parameter g ( N  = 100, 
k = 5) .  The statistical errors are denoted by error bars ( 3 ~ ) .  ( b )  The K Y  dimension 
plotted against the connectivity k ( N  = 300, g = 1) .  The line D K ~  = 5 is marked. 

the existing connections between the neurons are changed in a random fashion after 

chosen from an ensemble of random numbers with an equal distribution in the inter- 
vall [-1,1]. The other details of the dynamics (1) are kept unchanged. In the rest 
of the paper this model will be referred to as the stochastical model. Even though 
an attractor in the deterministic sense is not always reached with this dynamicst, we 
will apply the same numerical methods on the set of points in phase space, that are 
reached dgring itpra_?ion. This can be u i n g  the ac!ua_! (random) p!emen!.s of .J.. ' I  
and the actual state vector s ( t ) ,  that are generated in every step of the iteration, t o  
gether with equation (3), in order to calculate the linearization of the mapping. Using 
these data we can apply the OR decomposition mentioned in t3.1 and described in 
detail in [27]. 

This calculation of the Lyapunov exponents of the stochastical model converges 
approximately within the same number of iterations as for the original model. In 
figure 4(a) we plot the Lyapnnov spectra for both models with different sets of control 
parameters. For the stochastical model we average the spectra of 300 iterations (i.e. 
300 different coupling matrices), and in the deterministic model we plot the average 
spectra of 20 different coupling matrices with 300 iterations of each of them. We 
observe that the corresponding spectra of the two models are almost identical. For 
higher values of the nonlinearity (g > 1) the spectra show small differences, but the 
largest Lyapunov exponents (that mainly determine the dynamics) of the two models 
are the same for a wide range of parameter values. 

This feature can be observed only for sufficiently large networks. In figure 4(b) 
the dependence of the largest Lyapunov exponents on the size of the network for 
the deterministic and stochastical model are compared. I t  turns out that for small 
networks (N 5 10) the Lyapunov exponent of the stochastical model is larger. For 
larger networks the Lyapunov exponents become almost identical. 

eveiy i t m t i o n ,  i.e. aftfte: each timestep new e!eiiieiits :. . of the coupling matiin are 
' I  

t In all c-es we ignore the first (few thousand) iterations (with new coupling matrices in every 
timestep) to  allow global trends to settle down. 
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Figure 4. Comparison of the Lyapunov spectra of the deterministic (triangles) and 
the stochastical (circles) model. (a) For both models (N = 100) the spectra are 
plotted for three parameter combinations: I, g = 0.5, k = 5 ;  11, g = 1.5, k = 5 ;  111, 
g = 1 ,  k = 2 0 .  ( b )  The largest Lyapunov exponent for the two models is plotted 
against the size afthe network. The statistical e n "  are denoted by error b m  (30). 

4. Analytical description 

4.1. Dependence on the parameters  

The quantity that mainly determines the dynamical behaviour of the system is the 
largest Lyapunov exponent. In order to  understand the dependence of A, on the con- 
trol parameters we want t o  find an estimate for the largest eigenvalue of the Jacobian, 
T, equation (3). As a simple ansatz we interpret the Jacobian as a random matrix and 
approximate the spectrum of eigenvalues by the spectrum of a matrix G with entries 
chosen from a Gaussian ensemble [26]. The Gaussian ensemble should have the same 
mean and variance as the Jacobian 1. If the variance of the random matrix is known, 
the largest eigenvalue wmaX can be calculated using the Wigner semicircle rule [30]: 

0 := var[G]/N + wmax = fi. (5) 

With the variance v of the non-zero entries in the Jacobian (3), we therefore get for 
the largest Lyapunov exponent 

Amax = In(&) 

In order t o  calculate this variance zi we replace J i j  and C J i j , s j ( t )  in the Jacobian (3) 
by the random variahlest z and y with a Gaussian distribution ((2) = (y) = 0). The 
uniform distribution of the non-zero elements in the Jacobian J corresponds to the 
variance1 U= = uyo = 0, 

t The state variable s, is assumed to be +/ - 1 randomly. 
f The variance oI 01 the random variable y that replaces the sum in (3) has to be calcukted, taking 
into account that there are only 2k non-zero elements in every column of J: my = $%avo. 
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This gives for the variance of z 

p(i)zz d r  

where p ( r )  is the probability density of the distribution that is generated by inserting 
the Gaussian random numbers in (7). I t  is calculated in equation (9) below by ink-  
..-- &:.... &I.- /P".."-:-.., ..--l."l.:,:... >-..-:*.. ^C &Le : * ..--:"l.,-- - ""-1 ., .....,, ; . . l ;d  
5 L d b l l l &  lluc {"""UJld", yL"uo.""1~J uclrarby U, b'IC r,rp,ur Y d , I a u I c I  .L -11" y "1"1Y'l,"1~" 

with the derivative of the inverse of equation (7): 

. (9) 
1 yz zz  cosh4(gy) 

p ( r )  = - /_I dy exp (-- - 
27r,7,ay 2.; 2ozgz 

The k dependence of the integral (8) is determined by the dependence of ay on k. 
This enables us to fit the k dependence of the largest Lyapunov exponent, if the result 
of (8) for one k value is obtained by numerical integration. Using the exponent A,/z 
for k = 4, the equation reads 

A,,, = A : ; ~  + 1 ~ ( ( 2 k y / ~ ) .  (10) 

In figure 5 the results of this equation are compared to the numerical data. The 
average maximal Lyapunov exponent has been calculated for 20 realizations ( N  = 300, 
g = 1) of the coupling matrix J.  We want to emphasize that in equation (10) no fit 
of the actual numerically calculated exponents is involved, it is derived completely 
from the described statistical considerations. If we fit, for example, the A,,, to the 
numerical data,  the agreement would be even better. 

-, - 

largest Lyapunov exponent AI 

0 20 40 60 

cnnnec!i"i!.y k - 
Figure 5. The dependence of the largest Lyapunov exponent on the connmtivity 
k. The numerical results (circles) (N = 300, 9 = 1) are compared to the analytical 
results equation (IO) (full curve). 
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4.2. Lyapunov Spectm 

In this subsection we want to generalize these results to the complete spectrum of 
Lyapunov exponents. For this reason we consider not only the largest eigenvalue, 
but the complete spectrum of a Gaussian matrix G, again with the same mean and 
variance as the Jacobiant: 

P var[G] = - 
N 

This gives a distribution of eigenvalues with the same probability in a circle with 
radius wmax = Jp, therefore we get for the density p of eigenvalues 

Hence we get for the probability to find an eigenvalue with a absolute value less than 
W 

(13) 
2 g(w) = paw . 

The continuous range between the largest (g(w) = 1) and the smallest eigenvalue 
(g(w) = 0) is now parametrized by means of the variable a. This variable corresponds 
to the normalized index i / N  in the numerical calculations in the limit of N + 03, 

where the spectrum of Lyapunov exponents is continuous. Now the eigenvalue and 
the value of the Lyapunov exponent with the normalized index (I can be calculated 
by setting g(w) = 1 - a: 

w((I) = w m a x f i  with 0 < a < 1 

+ ~ ( a )  = In ( w m a X f i )  

where the largest eigenvalue wmaX for a given set of control parameters can be cal- 
culated according to the results of (10) and (8). Even though the Jacobian of the 
considered network is not a Gaussian random matrix chosen new in every timestep, 
we see in figure 6 that the results of this simple approximation describe the numerical 
data surprisingly well (especially for small gain values g - 1). Again we want to point 
out that no fit is involved in  this result. 

5 .  Discussion 

In this paper we have used nonlinear dynamics, in particular Lyapunov spectra, as a 
tool to describe a network with neural architecture. Generally, it turns out that  the 
attractor dimensions are quite low compared to the dimensions N of the phase space$, 
i.e. the system is determined by only a few of the possible degrees of freedom. This 

t This ansatz allows us to calculate generally the Lyapunov spectrum of a dynamical system with a 
Jacobian which is a Gaussian matrix, i.e. this result would be obtained. i f  one applies the method 
described in section 3.1 to Gaussim random matrices independently chosen in every timestep. 
$ For example D K Y  % 3 for N = 100 (g = 1. k = 5 ) .  growing linearly with k for k 4: N .  
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Figure 6.  Comparison to the numerical results. The bold curve shows the result ai 
equation (14). whereas the circle denote the numerical results for a network of 400 
neurons ( k  = 5, g = 0.8). The parmeter wmll = 0.846 is chosen according to ( 8 ) .  

fact shows that it may be possible to  find low-dimensional models that describe the 
integral features of chaotic neural networks. 

The comparison between the deterministic model and a stochastic model (where a 
new random connection matrix is chosen in every timestep) shows that the Lyapunov 
spectra are almost identical for a wide range of parameter values. This is in agreement 
with the resuits for conservative dynamicai systems jbiiiiardsj with many degrees of 
freedom 131-341, where the spectra for random evolution and deterministic dynamics 
have been compared. We conclude from this behaviour that the stochastical system 

are not systematically different. 
is near enough to the deterministic chaotic attractor. so that the Lvapunov exponents 

largest Lyapunov exponent on the coniro; parameieis, we:: tho shape of the 

- 

Furthermore, we have been able to describe analytically the dependence of the 

Lyapunov spectrum if the largest exponent is known. In order to  do this, we have only 
to  calculate the variance of the Jacobian assuming that the entries are independent 
random variables. The success of this procedure implies that the dynamical behaviour 
of the system does not depend too much on the actual construction of the model. For 
example, this kind of treatment holds also for random connection matrices with other 
(e.g. Gaussian) distributions or different network topologies, as long as the constrains 
are not too strong (e.g. symmetrical couplings). As discussed before, even stochastical 
systems can be described with the presented analytical ansatz. 

From these results we conclude that the combination of nonlinear dynamics and 
statistical methods is a promising method for the treatment of highly connected non- 
linear systems (e.g. neural networks), that perhaps can even be extended towards a 
description of ?he dynzmics of ?he m ~ ! !  more comp!icc?ed bio!ogka! neura! systerns. 
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