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Abstract. Dynamical properties of a network model composed of N continuous
elements with randomly chosen asymmetrical couplings and reduced connectivity are
studied. We calculate numerically Lyapunov exponents and dimensions for chaotic
and non-chaotic states of the network. The dependence on the parameters can be
described analytically, in good agreement with the numerical data.

1. Introduction

The physical properties of neural networks have been studied frequently by means of
models that show fixed point attractors [1-4). However, in neurobiological measure-
ments one finds time-dependent, normally non-periodic behaviour. This behaviour
has been analysed in terms of nonlinear dynamics [5-7). It has been claimed in re-
cent studies [8-11] that the time dependence is essential for the data processing in
the brain. Therefore the dynamical properties of network models that show com-
plex temporal behaviour have attracted more and more attention during the past few
years [12-22], There have even been examples of possible applications for the chaotic
network dynarnics [23, 24].

In this paper we study a network model [25] that exhibits deterministic chaotic
behaviour. The global structure of the network is neural, i.e. a number of identical
simple elements (neurons) that sum up weighted inputs from other elements and give
an output with respect to a sigmoid function. In order to distinguish this special
kind of architecture from others like cellular autémata and coupled map lattices it has
become common {13, 15, 22, 26] to call this kind of network with neural architecture
a ‘neural network’ even when no specific learning algorithm is involved. We analyse
the nonlinear dynamical properties of such a network numerically as well as analyti-
cally. We calculate the spectra of Lyapunov exponents {27, 28] and the Kaplan-Yorke
dimension {29] of the non-chaotic and chaotic (strange) attractors. The dependence
of the largest Lyapunov exponent on the parameters and the shape of the Lyapunov
spectra can be described analytically with only a few assumptions. Even though we
consider a deterministic model and study the properties of the attractor, the main
results hold also for a similar model, where the model parameters (i.e. the connection
strengths) are changed randomly after every time step and a deterministic attractor
is never reached.
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2. Description of the model \

The model consists of N neurons which are represented by continucus variables s,
These neurons are coupled through an asymmetrical matrix J with J;; € [-1,1] cho-
sen randomly from an ensemble with equal distribution. The parallel deterministic
dynamics is given by

e (1t L 1Y — tanhfah (41}
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where ¢ is the gain parameter a.nd the integer number £ represents the connectivity.
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where every neuron is connected to the k nearest neighbours in both directions. In
the numerical simulations therefore only the synaptic values of 2kN (instead of N?)
connections have to be stored. However, for the analytical treatment it is more con-
venient to formulate this connection scheme in terms of a quadratic band matrix J,

where only the k off-diagonal elements in both directions are non-zero. We simulate
thl:s network uszing a random start vector S(0Y = {=. {0} 0) {n\\ and Ih:\rntn

ork using a random start vector $(0) = (s,{0), 5,(D), ..., 65 (0)) and itera

it according to the dynamics (1). In order to study the properties of the a.ttra.ctor the
first transient iterations (approximately 1000) are ignored.

In a preceding paper [25] we have shown that, depending on the values of the
control parameters g and k, one can observe stationary, periodic, quasiperiodic and
chaotic behaviour {figure 1)i. The line of transition from stationary to time-dependent
behaviour turns out to be k, o ¢~?, almost independently of N. This can be under-

stood in terms of a linear stablllty analysis [20, 26).
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Figure 1. Phase portraits for two different gain parameters and for constant
connectivity k = 5 (N = 400). As an observable the mean square deviation
0(5) = ZN (S,‘(to) — #;(t)) is plotted. The starting time s.(ig) is chosen such
that transients have disappeared \appl"oxmmwly 1000 iterations). {a) g = 0.475 the
system is in a quasiperiodic state; (b) g .5: the phase portrait exhibits chaotic
behaviour.

t If the system is in this state, a trapping by a periodic orbit has not been found, even after several
millions of iterations.
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We wish to point out that the details of the model {e.g. topology, distribution
of the random numbers) are chosen in way described for the sake of convenience of
simulation and analysis only. When not mentioned explicitly, the same model is used
always in this paper. It turns out, however, that similar results can also be obtained
from a large number of different models with asymmetrical random couplings, when
the parameters are chosen in an appropriate way.

3. Numerical results

3.1. Lyapunov spectra

The dynamical behaviour of the system can be characterized in more detail by means
of the spectrum of Lyapunov exponents A;. The Lyapunov exponents measure the
mean exponential separation between closely adjacent points under the action of the
dynamics in the N different directions of the phase space. A positive Lyapunov ex-
ponent means sensitive dependence on the initial conditions, i.e. chaos. In order to
calculate the A-spectra, the neural network is considered as a N-dimensional nonlinear
mapping 8,,, = f(8,). The Lyapunov exponents of f can be calculated as described
by Eckmann and Ruelle [27] using the Jacobian of the mapping, defined as

T(s(t)) = D, f(s(t)) (2)

where D, denotes the matrix of partial derivatives. The Jacobian can be calculated
analytically for every given state of the system:

9J;;
T;;(s(t)) = cosh? (g Jry5; (O] (3)

In order to separate the stretching—described by the Lyapunov exponents—from the
rotation, we use the method of subsequent QR decomposition [27) of the Jacobian,
where Q is an orthogonal matrix and R is upper triangular. The characteristic expo-
nents A; can now be calculated from the logarithm of the averaged diagonal elements
R,;. The values are indexed such that A, is the largest Lyapunov exponent and the
following are in decreasing order: A, > A, > ... > Ay such an ordered set of A,
represents the Lyapunov spectrum of the system.

We now compare the Lyapunov spectra for different sizes & of the network con-
sidered. In order to do this, we average the Lyapunov exponents over a number of
realizations (about 20) with different coupling matrices and we normalize the index ¢
to the number N of exponents. We observe (figure 2) that the normalized Lyapunov
spectra are almost tdenticalf, i.e. the global structure of the characteristic exponents
is independent of the size of the network. Furthermore, we observe that only a few
(about 3) Lyapunov exponents are positive, whereas the rest (100 or more) are nega-
tive. This shows that only a few degrees of {reedom are chaotic and the rest show no
sensitive dependence on the initial cenditions. This behaviour can be quantified by
means of the Kaplan-Yorke dimension, as discussed in the next subsection.

t If not mentioned explicitly, the statistical errors in all figures are smaller than the symbols.
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Figure 2. The Lyapunov spectrum for different sizes (N = 50, 100, 150, 200) of
the network. The resulting Lyapunov exponents are plotted against the index of the
exponent normalized to the size N of the network. These normalized spectra are
almost identical.

3.2. Kaplan-Yorke dimension

The static properties such as the fractal dimension of the attractor are connected to the
dynamical properties, such as the Lyapunov exponents, by the Kaplan—Yorke relation.
If the spectrum of Lyapunov exponents is known, the dimension of an attractor can
be calculated according to the Kaplan-Yorke conjecture [28, 29] via the following
formalism:
Y
Dyy =3+ ;_‘1_1 (4)
Al
where j is the largest integer for which E‘izl A > 0.

This enables us to extract for every given set of system parameters a single quan-
tity that describes the static properties of the attractor. In figure 3(a) we show the
dependence of the KY dimension Dy on the gain parameter g. We find that first
the dimension increases with the gain reaching a maximum at about g = 1.5. After
this point the KY dimension decreases even though the largest Lyapunov exponent
still increases after this point. It should be pointed out that even the largest attractor
dimension 1s quite low compared to the dimension (N = 100) of the phase space.

The dependence of the dimension on the connectivity k for a network of N = 300
neurons and a gain near the maximum in figure 3(a) is depicted in figure 3(8). These
results show us another feature: the KY dimension starts with a slope of one, which
means that the attractors’ dimension is about half the value of the number of directly
connected neurons (i.e. Dyy = k). For higher values of k the slope decreases due to
the effects of the finite size of the network.

3.8. Stochastical variation of the coupling matriz

Up to now, we have described the properties of the attractors generated by the deter-
ministic network dynamics. These considerations can be extended on a model where
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Figure 3. (a) The Ky dimension pletted against the gain parameter g (N = 100,
k = 5). The statistical errors are denoted by error bars (3¢). () The KY dimension
plotted against the connectivity k& (N = 300, ¢ = 1). The line Dgy = k is marked.

the existing connections between the neurons are changed in a random fashion after
every tleration, i.e. after each timestep new elements J;; of the coupling matrix are
chosen from an ensemble of random numbers with an equal distribution in the inter-
vall [~1,1]. The other details of the dynamics (1) are kept unchanged. In the rest
of the paper this model will be referred to as the stochastical model Even though
an attractor in the deterministic sense is not always reached with this dynamicsf, we
will apply the same numerical methods on the set of points in phase space, that are
reached during iteration, This can be done using the actual (rand@m\ elements of . TJ
and the actual state vector s(t), that are generated in every step of the iteration, to-
gether with equation (3), in order to calculate the linearization of the mapping. Using
these data we can apply the QR decomposition mentioned in §3.1 and described in
detail in [27).

This calculation of the Lyapunov exponents of the stochastical model converges
approximately within the same number of iterations as for the original model. In
figure 4(a) we plot the Lyapunov spectra for both models with different sets of control
parameters. For the stochastical model we average the spectra of 300 iterations (i.e.
300 different coupling matrices), and in the deterministic model we plot the average
spectra of 20 different coupling matrices with 300 iterations of each of them. We
observe that the corresponding spectra of the two models are almost identical. For
higher values of the nonlinearity (g > 1) the spectra show small differences, but the
largest Lyapunov exponents (that mainly determine the dynamics) of the two models
are the same for a wide range of parameter values.

This feature can be observed only for sufficiently large networks. In figure 4(4)
the dependence of the largest Lyapunov exponents on the size of the network for
the deterministic and stochastical model are compared. It turns out that for small
networks (N < 10) the Lyapunov exponent of the stochastical model is larger. For
larger networks the Lyapunov exponents become. almost identical.

t In all cases we ignore the first {few thousand) iterations (with new coupling matrices in every
timestep) to allow global trends to setile down.
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Figure 4. Comparison of the Lyapunov spectra of the deterministic (triangles) and
the stochastical {(cirdes) model. (a) For both models (N = 100} the spectra are
plotted for three parameter combinations; I, g = 0.5, k = 5;II, g = 1.5, k = 5; I11,
g = 1, k = 20. (b) The largest Lyapunov exponent for the two models is plotted
against the size of the network. The statistical errors are denoted by error bars (30},

4. Analytical description

4.1. Dependence on the paramelers

The quantity that mainly determines the dynamical behaviour of the system is the
largest Lyapunov exponent. In order to understand the dependence of A; on the con-
trol parameters we want to find an estimate for the largest eigenvalue of the Jacohian,
T, equation (3). As a simple ansatz we interpret the Jacobian as a random matrix and
approximate the spectrum of eigenvalues by the spectrum of a matrix G with entries
chosen from a Gaussian ensemble [26]. The Gaussian ensemble should have the same
mean and variance as the Jacobian T, If the variance of the random matrix is known,
the largest eigenvalue w,, ., can be calculated using the Wigner semicircle rule [30):

B :=var[G}/N = w,,, = \/E (5)

With the variance v of the non-zero entries in the Jacobian (3), we therefore get for
the largest Lyapunov exponent

Aae = In(V2kv). (6)

In order to caleulate this variance v we replace J;; and 3 J;;5;(t) in the Jacobian (3}
by the random variablest = and y with a Gaussian distribution ({z) = (y) = 0). The
uniform distribution of the non-zero elements in the Jacobian J corresponds to the
vatiance} @, = 0,4 = /1/3,

-9 7
¢ cosh?[gy] ¢

t The state variable s, is assumed to be 4/ — 1 randomly.
t The variance oy of the random variable y that replaces the sum in (3) has to be calculated, taking
into account that there are only 2k non-zero elements in every column of J: o, = /2koyo.
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This gives for the variance of z

v= f_m p(z)2% dz (8)

4]

where p(z) is the probability density of the distribution that is generated by inserting

the Gaussian random pumbers in (7) It is calculated in equation (9) below by inte-

dha M einain Ablabi I} SR ahla nA inliad
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with the derivative of the inverse of equation (7):

22 cosh®(gy) | cosh?(gy)
p(z) 21ra' = f dy exp (—-— - 2alq? p . (9)

The k dependence of the integral (8) is determined by the dependence of o, on £.
This enables us to fit the k dependence of the largest Lyapunov exponent, if the result
of (8) for one k value is obtained by numerical integration. Using the exponent A,y

for k = —;—, the equation reads
ra +In((2k)7), (10)

In figure 5 the results of this equation are compared to the numerical data. The
average maximal Lyapunov exponent has been calculated for 20 realizations (N = 300,
g = 1) of the coupling matrix J. We want to emphasize that in equation (10} no fit
of the actual numerically calculated exponents is involved, it is derived completely
from the described statistical considerations. If we fit, for example, the A, to the
numerical data, the agreement would be even better. '

largest Lyapunov exponent A,

.25 &

~-0.25

(=]
e
a

-0.5 + E

_TI.lennnnl. UL PRIV VA T S I T N S R
0 20 40 60

connectivity k  —

Figure 5. The dependence of the largest Lyapunov exponent on the connectivity
k. The numerical results (circles) (N = 300, g = 1) are compared to the analytical
results of equation (10} (full curve).
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{.2. Lyapunov Specira

In this subsection we want to generalize these results to the complete spectrum of
Lyapunov exponents. For this reason we consider not only the largest eigenvalue,
but the complete spectrum of a Gaussian matrix G, again with the same mean and
variance as the Jacobiant:

var[G] = Nﬂ— (11)

This gives a distribution of eigenvalues with the same probability in a circle with
radius wy,,, = VB, therefore we get for the density p of eigenvalues

12 if |w] < Winax

p(w) - { (ww?nax)- (12)

0 otherwise.

Hence we get for the probability to find an eigenvalue with a absolute value less than
w

- glw) = pru?. (13)

The continuous range between the largest (g{w) = 1) and the smallest eigenvalue
(g(w) = 0) is now parametrized by means of the variable &. This variable corresponds
to the normalized index i/N in the numerical calculations in the limit of N — oo,
where the spectrum of Lyapunov exponents is continuous. Now the eigenvalue and
the value of the Lyapunov exponent with the normalized index a can be calculated
by setting glw)=1—a:

wla) = W, V1 — o withl<a<l

= Ma) =In(w,,V1-a) (14)

where the largest eigenvalue w . for a given set of control parameters can be cal-
culated according to the results of (10} and (8). Even though the Jacobian of the
considered network is not a Gaussian random matrix chosen new in every timestep,
we see in figure 6 that the results of this simple approximation describe the numerical
data surprisingly well (especially for smnall gain values g ~ 1). Again we want to point
out that no fit is involved in this result.

5. Discussion

In this paper we have used nonlinear dynamics, in particular Lyapunov spectra, as a
tool to describe a network with neural architecture. Generally, it turns out that the
attractor dimensions are quite low compared to the dimensions N of the phase space],
i.e. the system is determined by only a few of the possible degrees of freedom. This

t This ansatz allows us to calculate generally the Lyapunov spectrum of a dynamical system with a
Jacobian which is a Gaussian matrix, i.e. this result would be obtained, if one applies the method
described in section 3.1 to Gaussian random matrices independently chosen in every timestep.

i For example Dgy %= 3 for N = 100 {g = 1, k = 5), growing linearly with k for k €/ N,
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Figure 6. Comparison to the numerical results. The bold curve shows the result of
equation {14), whereas the circles denote the numerical results for a network of 400
neurons {k = 5, g = 0.8). The parameter wmax = 0.846 is chosen according to (8).

fact shows that it may be possible to find low-dimensional models that describe the
integral features of chaotic neural networks.

The comparison between the deterministic model and a stochastic model (where a
new random connection matrix is chosen in every timestep) shows that the Lyapunov
spectra are almost identical for a wide range of parameter values. This is in agreement
with the resulis for conservaiive dynamical sysiemns (billiards) with many degrees of
freedom {31-34], where the spectra for random evolution and deterministic dynamics
have been compared. We conclude from this behaviour that the stochastical system
is near enough to the deterministic chaotic attractor. so that the Lyapunov exponents
are not systematically different.

Furthermore, we have been able to describe analytically the dependence of the
xafgesl. Lyd.puuuv expornent on the contiol paramieters, as well as the auapc of the
Lyapunov spectrum if the largest exponent is known. In order to do this, we have only
to calculate the variance of the Jacobian assuming that the entries are independent
random variables. The success of this procedure implies that the dynamical behaviour
of the system does not depend too much on the actual construction of the model. For
example, this kind of treatment holds also for random connection matrices with other
(e.g. Gaussian) distributions or different network topologies, as long as the constrains
are not too strong (e.g. symmetrical couplings). As discussed before, even stochastical
systemns can be described with the presented analytical ansatz.

From these results we conclude that the combination of nonlinear dynamics and
statistical methods is a promising method for the treatment of highly connected non-

linear systems (e.g. neural networks), that perhaps can even be extended towards a
deeerintion of the d matnics of the much mare rnmnllrnfpd h]n]nmra] neural sys tems.
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